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Discrete Velocity Models for Mixtures
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Models of discrete velocity gases have been used for a long time, but only in the
last few years have they become a tool to construct sequences converging to
solutions of the Boltzmann equation. It appears that the case of mixtures has
been rarely considered and only a couple of models, which are trivial in a sense
to be explained in this paper, have been introduced. Here we thoroughly
investigate the matter, and supply examples of models with both finitely and
infinitely many velocities.

1. INTRODUCTION

In the last twenty years research on discrete models of the Boltzmann
equation has flourished. On the one hand the lattice gas (with discrete
positions, velocities and time) has been introduced as a computational tool
for problems of ordinary hydrodynamics;(1,2) on the other hand the
research on merely discrete velocity gases (with continuous space-time),
started in the mid-seventies,(3,4) has continued to be investigated. In the
last eight years it started to become clear that the discrete velocity models
(DVM) were also becoming a tool to approximate the solutions of the
Boltzmann equation, at a theoretical if not at a practical level.(5-8)

A breakthrough came two years ago when Palczewski, Schneider and
one of the authors proved a consistency result for the DVM as an
approximation of the Boltzmann equation.(9) The other author of the pre-
sent paper must apologize for not realizing that this result was available
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and thus for writing the following sentence in a paper prepared a few
months after ref. 9 had appeared: "there is not a known procedure to
approximate in arbitrary fashion the continuous case by a sequence of
discrete models."(10) Another sentence of that paper ("their extension to
mixtures seems hard if not impossible, especially when the ratio of masses
is irrational (in fact I do not know of any discrete velocity model of the
traditional kind for mixtures, with the exception of the case when all the
momenta have the same magnitude and hence conservation of energy
follows from the conservation of the number of particles)") was however
correct, as far as we know, and is the motivation for the present work.

The extension of DVM to mixtures seems impossible when the ratio of
masses is irrational, but poses no special problems for the case of a rational
ratio (this limitation is, of course, irrelevant in practice). Yet, the fact that
only trivial models (in a sense to be specified below) have appeared so far,
stimulated us to write the present paper.

2. DISCRETE VELOCITY MODELS FOR MIXTURES

According to standard definitions, a discrete velocity model of a gas is
a system of partial differential equations of hyperbolic type (discrete
Boltzmann equation), having the following form:
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where vn are the discrete velocities (vectors of Rd) belonging to a pre-
arranged discrete set, calk and knl are positive constants and the vector
indices run over a discrete set of vectors with integer components, sym-
metrical with respect to the origin, whereas fn are the probabilities (per
unit volume) of finding a molecule at time t at position x with velocity vn.
We shall occasionally write f, as done in (2.1b), for the collection {fn}.

We certainly must assume that the collision term Qn(f, f) satisfies the
restrictions needed to guarantee the conservation of mass, momentum and
energy and the entropy inequality. We remark that this would be a
generalization with respect to the traditional concept of a discrete velocity
gas,(3,4) where it is assumed that each single collision satisfies momentum
and energy conservation.

However if we only assume that



where i/>a (a = 0, 1, 2, 3, 4) are the five collision invariants (1, ;;,, v2, v3,
\v\2) and Vj (j = 1, 2, 3) are the Cartesian components of v, we lose several
important properties of the Boltzmann equation.

We pause a moment to discuss what the physical interpretation of
these extended discrete velocity models could be. If we accept Eq. (2.2) as
the only restriction on Q n ( f , f), a collision is a more complicated process
than in the continuous velocity model. When two particles meet they
undergo a not completely deterministic process, in the sense that we cannot
guarantee that another pair will emerge from the collision with certain
velocities but only that the pre-collision momentum and energy will be dis-
tributed with a certain probability to a number of pairs; this is true even
in the continuous Boltzmann equation because the collision parameters
also determine the post-collisional velocities. Here we would go a step
further because Eq. (2.2) does not require that we exhibit possible pairs of
these velocities; thus there are no elementary processes where mass
momentum and energy are conserved, but we only ensure that momentum
and energy are conserved globally.

We need, however, also assume the validity of an H-theorem and this
can be shown to require the conservation of momentum and energy in each
single collision, thus ruling out the possibility that we have just discussed.
As a consequence, however, we can also show the existence of a Maxwellian
distribution , //„, such that Q(Ji, Jt) = 0 and log ,/// is a linear combination
of the collision invariants.

We shall henceforth assume that(3)
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with

These assumptions make it easy to satisfy the conservation equations and
the H-theorem and might be slightly relaxed.

We now introduce a regular lattice as a grid in velocity space with step
h such that the grid points will have position vectors

Henceforth we shall consider this set of velocity vectors or some subset of the
said set. When we consider the entire set, Galilei invariance is lost but can
be replaced by a discrete symmetry (invariance with respect to translation



We remark that there are three different kinds of such models for the
general Boltzmann equation, plus a simple model for a very special case in
two dimensions with a "perpendicular law of scattering" (see ref. 11 for a
review).

The most natural and popular model was first proposed by Goldstein.
Sturtevant and Broadwell in 1989.(5) The proof of consistency for this
model was provided in ref. 9 (see also refs. 12 and 13).

Let us now show that we can generalize this kind of model (and the
proof of consistency) to the case of mixtures.

To this end, we consider a mixture with rational masses m1, m2,..., ms

where s is the number of species. If we exclude irrational ratios for the
masses, without loss of generality we can assume the masses to be given by
integers, by a suitable choice of the mass unit.

Let us consider any pair of molecules with masses mi, mj and let us
put mi = m,mj = M (m<M). The usual Boltzmann equation for mixtures
(with continuous velocities) has the following form
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rectilinear motions having velocity n0h where n0 is any chosen vector with
integer components).

The coefficients A™'k" must vanish if the following conservation equa-
tions are not satisfied:

where

where d=2, 3,..., f (v ) = f i,(v), F ( v ) = f j(w), and



The first step toward obtaining a form of the collision term suitable for
arriving at a discrete velocity model is to adopt u = v — w as an integration
variable. We obtain:

where the primed variables must be expressed according to

In the following it will be useful, for any vector u', to use the following
notation:
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We change again the variables by letting u = (m + M) u and then omitting
the tilda. The result reads as follows:

We have the following lemma of discrete approximation:

Lemma. Let Vfu, u ' ) : sJ?dx SJ?'/=>SJ? be continuous and have a com-
pact support. Let, for any d>3:

where |J2,/_il is the area of the unit sphere in d dimensions and r ,y ( | n | 2 )
denotes the number of the roots of the equation |m|2= |n|2 where the



vectors with integer components m and n denote, respectively an unknown
and a given vector. Then

This lemma provides the desired approximation and hence a rule to con-
struct discrete velocity models for mixtures with arbitrarily many velocities,

We remark that the previous lemma is a slight generalization of a
statement first made in ref. 13 and is related to classical problems of num-
ber theory.(14,15) The problem is full of subtleties and one can also provide
an estimate of the error in the quadrature formula given above.(9) The
starting point is that any number which is not congruent to 7 (mod. 8) can
be represented as a sum of three squares and the number of possible repre-
sentations grows sufficiently fast with the size of the number. The main
problems do not arise from numbers congruent to 7 (mod. 8) (in fact they
never arise since we equate the sum of three squares to a number which is
known already to be the sum of three squares) but from special sequences
of the form {4"m0}, where m0 is a fixed number prime with 4 and n grows;
in fact for these sequences the number of roots r r f(4nm0) grows rather
slowly with n. The difficulty can be easily overcome. A key point of the
proof is the strong number-theoretical result (uniform distribution of
integer points on the surface of a 3D sphere) obtained by Iwaniec in 1987
(see refs. 12-15 for details).

For d = 2 matters are more complicated (there are much less integers
which are sums of two, rather than three, squares) and the proof of the
above lemma does not hold.

In the next section we shall investigate how to construct models with
a small number of velocities.

3. COLLISION MODELS WITH A SMALL NUMBER
OF VELOCITIES

Although we have a rule, it is not so easy to apply it to obtain models
with a small number of velocities. In fact, if the number of velocities is too
small we obtain models with some undesirable properties. In order to keep
matters at a simple level we shall exhibit only models for binary mixtures
in two dimensions.

The simplest models are given by Monaco and Preziosi in their
book.(16) They are not satisfactory (as indicated by the authors [16,
p. 74]), because no exchange of energy between the species occurs. It is just
what we mean when we say that they are trivial.
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Fig. 1. The discrete velocities tor the two trivial models.

The simplest model has 4 + 4 velocities defined as follows:

The next model has 8 + 8 velocities and has the same drawback. The
velocities are defined as follows: we take the previous 4 + 4 velocities and
add another set of 4 + 4 velocities:

where, of course, all the possible combinations of signs have to be taken.
The velocities of this model are shown in Fig. 1.

In order to obtain less trivial models, we must increase the number of
velocities. Hence we shall introduce two new models with 5 + 8 and 9 + 1 6
velocities, respectively. The first of these models will still have a drawback,
as we shall see.

The first model is defined as follows:

(a) The heavy particles, having mass M, can possess one out of five
velocities:
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(b) The light particles, having mass m, can possess one out of eight
velocities:

The model is illustrated in Fig. 2. All the Broadwell-type collisions between
identical particles with the same speed are permitted. Moreover, the follow-
ing nontrivial collisions (with the scattering angle 0 = n) are possible:

A clear drawback of this model is that it becomes "unreasonable" in the
limiting case of two non-interacting species. In this limit one expects the
model to tend to two independent "reasonable" DVM for each component
of the binary mixture. Yet these DVM are unsatisfactory because we obtain
two independent Broadwell models (with velocities {v i} and {vi + 4},
i=1,..., 4) for light particles, and the Broadwell model (with velocities
{w i}, i=1,..., 4, plus the non-interacting particles with velocity {w ( )}) for
heavy particles.

Because of the above unsatisfactory feature, we introduce a second
nontrivial model, which is free from this drawback. The main idea behind
it is to allow some new collisions between the identical particles of the pre-
vious model, with the consequence of constructing a "reasonable" model
for each component of the mixture even in the limiting case discussed

Fig. 2. The discrete velocities for the first nontrivial model.



The model is illustrated in Fig. 3. This model is more complicated, but
rather rich (many collisions are possible) and much mote realistic. The
following nontrivial collisions between non-identical particles are possible:
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above. A price to be paid for this improvement is that the new model has
9+16 velocities.

The new model is defined as follows:

(a) The heavy particles, having mass M, can possess one out of nine
velocities, 5 of which are the five velocities of the previous model. The new
velocities are:

The new velocities are the result of the following collisions (with scattering
angle 0 = n/2):

Remark. A general rule for selecting these collisions is very simple:
two non-identical particles with velocities v (light species) and w (heavy
species) can collide if and only if

(b) The light particles, having mass m, can possess one out of sixteen
velocities, 5 of which are the five velocities of the previous model. The new
velocities are:

The new velocities are the result of the following collisions (with scattering
angle 0 = n/2):
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It is clear from Fig. 3 that for each v there is one and only one value w
which can permit a collision. As for heavy particles with velocity wi

(i= 1,..., 8), there exists just one possibility for i= 1, 2, 3, 4, two possibilities
for i = 5, 6, 7, 8 and four possibilities for i = 0.

We remark that there are two kinds of collisions between non-identical
particles. Thus (w0, v5) «-> (w 1 , v3) corresponds to the scattering angle
0 = n, whilst (w0, v 5 ) < - > ( w 5 , v 1 2 ) and (w0 , v5) <-> (w8 , v14) correspond to
& = n/2. Generally speaking, we should prescribe two different cross sec-
tions, say <T|| (0 = n) and a± (0 = n/2), to the two kinds of collisions. As
we already mentioned, | v i — Wk| = M + m = const, for any colliding pair
(v i , wk); hence the two constants a\\ and a± define completely the DVM
related to collisions between different species.

There are also many new possible collisions (in comparison with the
previous model) between identical particles. All these collisions correspond
to 0 = n/2 (0 = n is equivalent to 0 = 0 for identical particles). Hence the
cross sections may only depend on the relative speed. We shall now briefly
list all the possible collisions between identical particles. As before we
denote by |u| = |vi- — V k | (light particles) and |u = |w i — w k | (heavy particles)
the relative speed. We assume, of course that the corresponding cross-
sections rm m( |u|) and ffMM(|u|) are given. Here is the list:

1. Light particles.

(a) Collisions of the Broadwell-type:

Fig. 3. The discrete velocities for the second nontrivial model.



4. KINETIC EQUATIONS AND COLLISION TERMS

In this section we shall briefly describe the equations for the second
non-trivial model (which includes the first one as a limiting case). Let fi,
(i= 1,..., 16) and Fk (k = 0, 1,..., 9) denote the distribution functions of the
light and heavy particles, respectively.

Then we can write the Boltzmann equations for a binary mixture in
the following form:
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1. Heavy particles.

(a) Collisions of the Broadwell-type:

where Ii, Qk and Si, Rk correspond to collisions of identical and non-
identical particles, respectively. First, we put:



Let us examine, now, the collision terms Ii, and Qk corresponding to the
same values of i and k considered for the "mixed" collisions (i.e., i= 1, 5, 9
and k = 0, 1, 5). To this goal we introduce the following notations for the
collision frequencies:
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and discuss the structure of the "mixed" collision terms Si and Rk. Our
models are obviously symmetric under the symmetry transformations

with corresponding permutations of indices i and k (see Figs. 2 and 3).
Therefore, it is sufficient to consider just a few essentially different cases,
say i= 1, 5, 9 and k = 0, 1,5 (see Figs. 2 and 3). In all cases we can write:

Then, glancing at the list of possible collisions (Eq. (3.10)), we easily
obtain:



Discrete Velocity Models for Mixtures 339

Any other collision term (for i = 1 , 5 , 9 and k =0,1,5) in the system of
Boltzmann equations can be easily obtained from the terms listed above
through a symmetry transformation.

This concludes the discussion of the second non-trivial term intro-
duced in this paper. The first, simpler model can be obtained as a limiting
case by letting:

It is clear that the second model can be extended by adding new velocities
appearing as a result of new collisions between particles of this model (with
scattering angle 0 = n and 6> = n/2). Following this procedure, we can con-
struct a sequence of DVM which consistently approach (the proof is very

Then we obtain

where (for i=1 ,5 ,9 and k = 0, 1 ,5)

Fig. 4. Sequence of DVM for a simple gas.



As an example of such sequence, we show in Fig. 4 the sequence of the sets
of velocities corresponding to a single gas (in which case we can always put
<7|,(«)=0).

5. CONCLUDING REMARKS

We have shown that the procedure used to approximate the
Boltzmann equation for a simple gas by DVM can be extended to
mixtures. In addition to giving a general procedure, we have studied in
some detail a few models with a small number of velocities. This part of the
paper may perhaps be looked upon as superfluous. This is not our opinion;
in fact no models (except trivial ones) have appeared before and our
detailed treatment shows that this lack of models in the literature is due to
the fact that one must go as far as 25 ( = 9 +16) velocities in order to
obtain a satisfactory, simple model. This model has clearly several limita-
tions and should not be taken as typical of the large class of models which
have been introduced in Section 2.

The renewed interest for DVM and their potential use as tools to
produce approximate solutions to the Boltzmann equation makes it
necessary to cover the area of mixtures as well. We remark that a
byproduct of this paper is the possibility of showing that the coefficient of
|v|2 in the exponent of the discrete Maxwellian must be a function of the
absolute temperature multiplied by the molecular mass. In fact, we can
introduce the "discrete Maxwellians," which are of the form exp(i^) where
\jj is any collision invariant. If the only collision invariants for a single gas
are the classical ones (i.e., if the model is normal(17)), then the discrete
Maxwellian are exponentials of a second degree polynomial in v and can
be written as the usual Maxwellians. When we consider a nontrivial model
for a mixture of normal discrete gases, then equilibrium can be attained if
and only if the coefficients of the second and first degree terms in the
Maxwellians of each gas are in the same ratio as their masses (because of
conservation of mass and momentum). In particular if the mixture is at rest
just the coefficients of the second degree terms count and the only macro-
scopic parameter which must be equal for the two gases is temperature and
the statement above follows. Thus the proof of this basic fact can be carried
out within discrete kinetic theory without the necessity of resorting to a
general argument of equilibrium statistical mechanics as done in ref. 10.
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easy in this case) a continuous model, i.e., a system of Boltzmann equa-
tions. The differential cross section will have the very particular form:
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